变压控制 细粉分离器筒图 浮子液面控制器带动两个调节阀,一个调节阀控制天然气,另一个调节阀控制原油,实现原油和天然气出口处阀门的联合调节。当浮子上升时,连杆机构使气路调节阀的开口减小,油路调节阀的开口增;反之,当浮子下降时,连杆机构将使气路调节阀的开口增,油路调节阀的开口减小,上海砂水分离器采购。通过改变调节阀的开度,改变天然气和原油的相对流量,对分离器的液面进行控制。这种控制方法不对分离器的压力进行定值控制,上海砂水分离器采购,分离器的压力为天然气出口处或液体出口处的压力与天然气调节阀或液体调节阀前后的压力差之和。当气量和液量以及分离器下游压力变化时,分离器的压力是变化的,所以这种控制方法为变压控制,上海砂水分离器采购。分离器 ,就选上海协升化工科技有限公司。上海砂水分离器采购
分离器要能保持良的分离效果,需对其液位和压力进行控制。传统分离器液位和压力的控制采用定压控制技术。在分离器的变压力液面控制中,利用浮子液面控制器带动油和气调节阀,使其联合动作,控制原油和天然气的液量,完成对分离器中液位的调节,而不对分离器的压力进行控制。变压力的液面控制方法可以地减小油气出口阀的节流,减小分离器的压力,提分离效果。 油气分离器和油气水三相分离器在油田接转站和联合站中有着的应用。分离器要能保持良的分离效果,需要对其液位和压力进行控制上海水分离器生产厂家上海协升化工科技有限公司致力于提供分离器 ,有想法的不要错过哦!
离心分离原理:由于气体与液体的密度不同,液体与气体混合一起流动时,液体受到的离心力于气体,所以液体有离心分离的倾向,液体附着在分离壁面上由于重力的作用向下汇集到一起,通过排放管排出。 填充分离原理:由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡填料表面上由于重力的作用向下汇集到一起,通过排放管排出。由于填料相对普通折流分类来说具有更的阻挡壁面积,而且多次反复折流,液体更容易着壁,所以其分离效率更。
压湿气旋转产生离心力,并在离心力的作用下将湿气中的液滴甩至螺旋管管壁上,甩干,液滴沿着螺旋管管壁下落至密封腔内,并终有排水口,甩干后的气体进入密封腔并终上升经过滤器滤水,滤干,后由出气口排出,供燃料电池系统使用;二次干燥处进一步,所述壳体包括壳主体以及外罩,壳主体为柱状,其上端开口,下端密封,壳主体外周两条水槽,水槽贯穿壳主体下端,且成双螺旋分布,所述外罩罩装在壳主体上,外罩与两个水槽密封接触,且与壳主体下端之间留有间隙,共同构成所述双螺旋水道;所述壳主体上端分别设置有进口、出口,进口、出口分别连通双螺旋水道,构成双螺旋水道的进口端、出口端;冷却水进口连通进口端,冷却水出口连通出口端;所述排水口设置在壳主体下端,并穿过外罩伸出。理,汽水分离器更加效,满足燃料电池系统;同时,气体旋转进入密封腔,避免气流直接冲击汽水分离器底部积水,使得积水飞溅湿润已经甩干的气体,进而影响汽水分离器干燥效果。上海协升化工科技有限公司为您提供分离器 ,欢迎您的来电哦!
为保证液量较的情况下能够正常排液,分离器具有较的压力。但是在液量减小时,必须通过油水出口阀对液体节流,使液面不至于降。因此生产中,分离器一般在较的压力下工作,液相阀门处于节流状态。 分离器压力过影响分离器的进液,使中转站或计量站的输出口以及井口回压增,不利于输油。我国的油井多为机械采油,井口回压升,增加了采油的能源消耗。此外,在较压力下油中含有的饱和溶解气,在出油阀节流后,压力下降时,从油中分离出来,易使下游流程中的油泵产生气浊。因此较的分离器压力不但影响油气的分离效率,增加生产能耗,而且影响安全生产。分离器 ,就选上海协升化工科技有限公司,让您满意,有想法可以来我司咨询!上海汽水分离器采购
上海协升化工科技有限公司是一家专业提供分离器 的公司,欢迎您的来电哦!上海砂水分离器采购
经过进一步的探索,1904年Hazen根据实践经验提出了“浅池理论”,即在重力沉降过程中,分散而非结绒颗粒的沉降效果以颗粒的沉降速度与池面积为函数衡量,与池深、沉降时间无关,也即提沉降池的处理能力有两个途径:一是扩沉降面积,二是提水分沉降速度。提水分沉降速度的措施可以通过斯托克斯公式得出,扩沉降面积的措施是在容器内设置多层水平隔板。以这一理论为基础,1950年美国壳牌公司[3]研制成功第1台平行板捕集器,其可去除水中小为60μm的油滴。上世纪70年代Fram公司开发了V型板分离器,上世纪80年代CENATCO公司开发了板式聚结器,这是一种错流式组合波纹板,经过不断改进,这种设备在油气分离、油水分离和含油污水净化方面都得到了应用。上海砂水分离器采购
文章来源地址: http://huagong.chanpin818.com/flsb/qtflsb/deta_15011164.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。