所以他提议在化学元素周期表中列入一族新的化学元素,暂时让氦和氩作为这一族的成员。他还根据门捷列夫提出的关于元素周期分类的假说,推测出该族还应该有一个原子量为20的元素。在1896~1897年间,莱姆塞在特拉威斯的协助下,试图用找到氦的同样方法,加热稀有金属矿物来获得他预言的元素。他们试验了大量矿石,但都没有找到。他们想到了,从空气中分离出这种气体。但要将空气中的氩除去是很困难的,化学方法基本无法使用。只有把空气先变成液体状态,然后利用组成它成分的沸点不同,让它们先后变成气体,一个一个地分离出来。把空气变成液体,需要较大的压力和很低的温度。而正是在19世纪末,德国人林德和英国人汉普森同时创造了致冷机,获得了液态空气。1898年5月24日莱姆塞获得汉普森送来的少量液态空气。莱姆塞和特拉威斯从液态空气中首先分离出了氪。接着他们又对分离出来的氩气进行了反复液化、挥发,收集其中易挥发的组分。1898年6月12日他们终于找到了氖(neon),元素符号Ne,来自希腊文neos(新的)。氖,原子序数10,原子量为,是一种稀有的惰性气体。1898年由英国科学家拉母赛和特拉弗斯发现。在大气中的含量按体积算为。有三种同位素:氖20、氖21和氖22。用氖代替氢作为实验的安全冷却剂。河南工业氖储存
频率转换将不发生,激光将无改变的通过非线性晶体,且由于晶体对各个波长的透过率非常高,功率损耗很小可忽略。当非线性晶体421、422均工作在比较好温度时,输出全部激光波长,分别为1064nm、532nm、355nm;当非线性晶体421均工作在比较好温度时,非线性晶体422远偏离比较好温度时,输出两种波长,分别为1064nm、532nm;当非线性晶体421、422均远偏离比较好温度时,输出一种波长,为1064nm。同样,当使某一非线性晶体工作在其比较好工作时,可使此非线性晶体产生的波长的激光输出功率比较大,若稍微调离比较好工作温度时,可使此晶体对应产生的波长功率降低,从而可以调节各个波长输出的比例。以此类推。至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域:中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不*限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。依据以上描述,本领域技术人员应当对本公开可控的多波长激光输出装置有了清楚的认识。综上所述,本公开提供了一种可控的多波长激光输出装置。四川超纯氖哪家好氖用于充填辉光灯、电子管、辉光指示牌、 荧光发射管、火花室、盖革-弥勒管和气体激光 器。
液氧从空气分离单元10的低压塔74的贮槽中抽出并通过重力进料至汽提塔冷凝器320、420的沸腾侧。液氧在汽提塔冷凝器320、420中沸腾以为蒸气部分冷凝提供致冷。因为汽提塔冷凝器320、420在比空气分离单元10的低压塔74的压力更高的压力下操作,所以汽化氧气蒸气324、424被返回至接近低压塔74的底部的位置。汽提塔冷凝器320、420被定位在低压塔贮槽的下方以允许氧气流在图4和图5所示的实施方案中由重力驱动。有利的是。与图2所示的实施方案相比,使用液氧来提供用于汽提塔冷凝器320、420的致冷负荷消除了对氮气制冷压缩机的使用。与图2的实施方案一样,来自高压塔72顶部的盘架蒸气315、415作为上升蒸气被进料至不可冷凝物汽提塔320的底部,而不可冷凝物汽提塔的下降液体回流包括:(i)离开主冷凝器-再沸器80的液氮流;(ii)离开汽提塔冷凝器327、427的液氮冷凝物流;和(iii)离开氖气质量改善装置340、440(即,回流冷凝器342、442)的液氮冷凝物流345、445。在不可冷凝物汽提塔320、420内,较重的组分如氧气、氩气、氮气集中在下降液相中,而上升汽相富含轻组分如氖气、氢气和氦气。在图4和图5的实施方案中。
且也存在[O]含量控制范围较宽的问题。技术实现要素:本发明提出了一种风电轴承用中碳硼微合金化钢及其制备方法。本发明是在42CrMo的基础上添加了微量B合金元素以提高材料的淬透性,同时适量提高了碳C、锰Mn、硅Si等合金元素含量以提高材料的强度,得到了一种低成本且性能完全满足要求的风电轴承用钢。本发明的技术方案如下:一种风电轴承用中碳硼微合金化钢,它的化学成分重量百分比为:C:~、Mn:~、Mo:~、Cr:~、Si:~、Al酸溶≧、B:~、N:≦、O:≦、H:≦、S:≦、P:≦,其余为Fe和正常杂质。上述风电轴承用中碳硼微合金化钢的制备方法:(1)将上述化学成分的钢水采用常规转炉炉外精炼和真空脱气处理,通过保护浇铸工艺获得纯净钢坯,将钢坯进行热塑性加工、退火、热碾环加工成轴承;(2)轴承的**终热处理工艺为:奥氏体化温度850~880℃,保温时间按照,油淬后高温回火,回火温度550~650℃,保温时间按照工件厚度不同为1~2小时,回火后油冷至室温。由于添加了微合金元素B,大幅度提高了材料的淬透性;利用Al合金元素来固定N元素,保证B合金元素能够起到有效的提高淬透性的作用;将42CrMo钢中的C、Si、Mn合金元素的含量提高。在工业气体液氖上部抽出蒸气,很容易使液体氖变为固体氖。
Gigaphoton限时的eTGM技术也将扩展到G41K系列KrF激光器和GT40A系列ArF激光器。这一扩展计划将于2015年11月启动。通过引进eTGM技术,KrF和ArF激光器可减少25%的氖气用量,ArF浸没式激光器可减少高达50%的氖气用量。加速推出Gigaphoton的气体回收技术hTGM。该技术适用于所有类型的激光器。hTGM预计于2016年上市。采用hTGM技术后,客户将可以回收高达50%的消耗气体。Gigaphoton总裁兼首席执行官HitoshiTomaru表示:“氖气是半导体制造业不可或缺的气体,我们认识到在当前情况下,持续的供应危机是一个极为严重的问题,将会严重威胁生产的连续性。Gigaphoton将尽一切努力来支持客户的稳定生产,为此我们推出了三大措施:为气体供应商提供快速资质认证、大幅减少气体使用及尽早推出气体回收技术。在高电压下,氖气可被激发为氖的等离子体状态,发出红色橙色的荧光。贵州高纯氖多少立方
氖气是一种无色、无臭的惰性气体。河南工业氖储存
输出镜,镀有各个波长的部分透过膜;以及多个温控炉,用于分别安放所述二倍频非线性晶体、三倍频非线性晶体并进行加热,通过控制温控炉温度,实现调节输出光中各个波长激光的比例。所述二倍频非线性晶体的比较好工作温度为148℃;所述三倍频非线性晶体的比较好工作温度为60℃;431为谐振腔的全反镜,镀有全部波长的全反膜,镀1064nm、532nm、355nm的高反膜。411为激光晶体,即激光器的工作物质,用于产生基频光1064nm波长。421为二倍频非线性晶体,用于二倍频过程产生532nm波长。422为三倍频非线性晶体,用于三倍频过程产生355nm波长。432为二倍频谐波镜,镀有1064nm高透膜和532nm的高透膜。433为三倍频谐波镜,镀有1064nm、532nm的高透膜和355nm的高反膜。434为输出镜,镀有各个波长的部分透过膜,可是各个波长均有一定的反射率,在腔内形成振荡。同样,非线性晶体421、422均已经调节到比较好工作位置,且每个晶体均固定在精确温度控制的温控炉内,温控炉统一由驱动控制器控制温度要求。如二倍频非线性晶体比较好工作温度为150℃,三倍频非线性晶体比较好工作温度为50℃。当偏离比较好工作温度时,将会使得频率转换效率降低,当偏离温度过多,如超过10℃甚至更高。河南工业氖储存
文章来源地址: http://huagong.chanpin818.com/gongyeqiti/naiqi/deta_22159927.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。