T7EndonucleaseI(T7EI)在CRISPR/Cas9基因编辑中的应用主要体现在突变体检测和基因编辑效率评估上。以下是T7EI在CRISPR/Cas9中的具体应用步骤和特点:1.**基因编辑效率评估**:-T7EI用于评估CRISPR-Cas9在给定的导向RNA靶位点上对细胞群体进行基因编辑的效率。-通过PCR扩增围绕CRISPR导向RNA靶位点的基因组DNA,如果CRISPR-Cas9介导的非同源末端连接(NHEJ)修复事件引入了突变,变性和退火将形成突变型和野生型PCR扩增子的异源双链DNA。2.**突变体检测**:-如果CRISPR/Cas9编辑成功在DNA上引入突变,则可与野生型DNA片段退火产生异质双链DNA。T7EI可以识别该DNA上的不完全配对的DNA位点然后进行双链切割,通过琼脂糖凝胶电泳即可显示酶切后的条带,从而半定量判定基因编辑效果。-T7EI能识别长度大于或等于2bp的插入、缺失或突变导致的错配DNA,不能识别1bp的插入、缺失或突变。3.**实验步骤**:-收集细胞并提取基因组DNA,然后使用PCR扩增期望编辑的基因组区域。扩增子的长度建议为0.5-1kb。-对扩增的DNA进行变性和退火复性,以产生异质双链DNA。-使用T7EI酶处理退火后的DNA产物,在37℃孵育15分钟。
BsuDNAPolymerase(嗜热脂肪芽孢杆菌DNA聚合酶)与其他DNA聚合酶相比,具有一些独特的特性和优势:1.**链置换活性**:BsuDNAPolymerase保留了BacillussubtilisDNA聚合酶I的5'→3'聚合酶活性,但缺乏5'→3'核酸外切酶结构域,这使得它具有链置换DNA合成的能力。这种能力对于等温扩增技术如重组酶聚合酶扩增(RPA)和环介导等温扩增(LAMP)非常重要,因为它可以分离双链DNA,允许新的DNA链的合成。2.**温度稳定性**:BsuDNAPolymerase在高温下保持活性,这使得它适用于需要在较高温度下进行的扩增反应,如RPA技术中的65°C反应条件。3.**无核酸外切酶活性**:BsuDNAPolymerase缺乏3'→5'和5'→3'核酸外切酶活性,这意味着它不会像某些其他聚合酶那样在合成过程中具有校对功能。这可以减少非特异性扩增,提高扩增的特异性。4.**高灵敏度和特异性**:BsuDNAPolymerase在等温扩增中展现出高灵敏度,能够将微量核酸模板扩增到可检测水平,同时保持高特异性。5.**简化的操作流程**:与其他需要复杂操作和多个步骤的DNA聚合酶相比,BsuDNAPolymerase在等温扩增技术中的应用简化了操作流程,因为它不需要热循环仪,这使得它适合现场快速检测和诊断。
T5核酸外切酶在基因编辑中确实有应用,并且具有一些优势:1.**提高编辑效率**:根据一篇研究文章,T5核酸外切酶可以与CRISPR/Cas系统共表达或融合,以提高基因编辑的效率。这种共表达或融合可以增加indel(插入和缺失)频率,尽管增加的幅度可能不大。2.**增强基因编辑效果**:在另一项研究中,通过使用螺旋-螺旋二聚体肽(coiled-coilpeptides)将T5核酸外切酶招募到Cas9或Cas12a蛋白上,可以提高基因编辑的效率,这种方法被称为CCExo(CRISPR-Coiled-coil-Exonuclease)。这种招募方式优于共表达和直接融合,其中强的亲和力CC对显示出高的突变频率和删除长度。3.**应用于多种细胞类型**:CCExo系统在多种细胞系和原代细胞中都能有效地提高基因失活效率,并且在慢性髓性白血病(CML)患者的原代细胞以及异种移植动物模型中展示了其应用潜力,这表明CCExo方法可能成为CML和其他遗传性疾病的潜在选择。T5核酸外切酶与CRISPR核酸酶蛋白进行融合,并引入了核定位信号(NLS)序列以构建表达载体,用于基因编辑。综上所述,T5核酸外切酶在基因编辑中的应用可以增强编辑效率和效果,尤其是在与CRISPR/Cas系统结合使用时。
嗜热脂肪芽孢杆菌DNA聚合酶I(BstDNAPolymeraseI)是一种热稳定的酶,它在高温下(55-65°C)仍然保持活性,这使得它在分子生物学实验中非常有用,尤其是在需要高温反应的实验中,如热循环扩增(PCR)。BstDNAPolymeraseI具有以下特性:1.**热稳定性**:BstDNAPolymeraseI在高温下具有较高的稳定性,适用于高温反应的实验,如PCR。2.**3'到5'外切酶活性**:这种酶具有3'到5'外切酶活性,能够切除DNA末端上的非特异性引物和杂交DNA,使其成为等温扩增应用的理想酶。3.**耐盐性**:BstDNAPolymeraseI在高盐条件下仍能保持稳定活性,这在一些特殊的PCR应用中非常有用。4.**等温扩增**:由于其3'到5'外切酶活性,BstDNAPolymeraseI用于等温扩增反应,如LAMP技术,这种技术能够在恒温下进行DNA扩增,无需繁琐的温度循环。5.**快速PCR**:由于其高温稳定性,BstDNAPolymeraseI也可用于快速PCR反应,缩短了实验时间。6.**高GC含量模板扩增**:BstDNAPolymeraseI对高GC含量模板的扩增效果较好,因此在一些难扩增的模板中表现出色。UBE2L3在调节NF-κB信号通路中的作用可能对免疫反应和炎症过程至关重要。
蛋白A-微球菌核酸酶(pA-MNase)是一种特殊的融合蛋白,它结合了蛋白A和微球菌核酸酶(MNase,MicrococcalNuclease)的特性。以下是pA-MNase的一些关键特点和应用:1.**融合表达产物**:pA-MNase是蛋白A与微球菌核酸酶MNase的融合表达产物,因此它同时具有ProteinA的抗体结合活性和MNase的核酸内切酶活性。2.**双重功能**:由于其双重功能,pA-MNase常用于蛋白质-DNA相互作用研究,特别是在ChIC(ChromatinImmunocleavage)和CUT&RUN(CleavageUnderTargetsandReleaseUsingNuclease)技术中。3.**ProteinA的特性**:ProteinA是一种发现于金黄色葡萄球菌(Staphylococcusaureus)的细胞壁表面蛋白,分子量为42kDa,能特异性地与哺乳动物免疫球蛋白(Immunoglobulin,Ig)结合,通常结合部位为免疫球蛋白的Fc区。4.**微球菌核酸酶(MNase)的特性**:MNase是一种核酸内切酶,能够降解核酸,常用于降解蛋白质制备中存在的核酸,减少细胞裂解液的粘度,以及用于染色质结构分析和快速RNA测序。5.**反应条件**:MNase的反应条件包括1XMicrococcalNucleaseReactionBuffer,需要补充100µg/ml重组白蛋白,分子生物学级,并在37°C下孵化。泛素蛋白是一种在真核细胞中存在的小分子蛋白质,由76个氨基酸残基组成,具有高度的保守性。Human MCP-3/CCL7
E2酶接收来自E1的激起泛素,并在E3酶的协助下将泛素分子转移到靶蛋白上。Human MCP-3/CCL7
Cre重组酶在基因编辑中的操作主要涉及以下几个步骤:1.**识别与结合**:-Cre重组酶首先识别并分别结合两个LoxP序列的两个反向重复序列,形成一个二聚体。2.**四聚体形成**:-两个二聚体互相靠近,形成由四个Cre分子与两个LoxP位点结合形成的四聚体复合物。3.**DNA切割与交换**:-Cre重组酶在每个LoxP位点的间隔序列中引导单链切割,产生带有3’端羟基的断裂。每个LoxP位点的两个单链分别被切割。切割产生的自由3’端与对侧的3’端进行交换和重连,形成Holliday交叉结构。4.**分子重组与解旋**:-Holliday交叉结构通过Cre酶的作用被解旋并重组,形成新的重组产物。这个过程导致两个LoxP位点之间的DNA序列被删除、反转或易位,具体效果取决于LoxP序列的排列方式(方向和位置)。5.**条件性基因编辑**:-通过建立特异性Cre小鼠,该小鼠中的Cre重组酶由特定启动子驱动,可在特定细胞或组织或全身表达Cre重组酶。与带有Lox位点的Flox小鼠杂交,子代中可以获得既带有Cre又带有Flox基因的小鼠,实现条件性基因打靶(表达或敲除靶基因)。Human MCP-3/CCL7
文章来源地址: http://huagong.chanpin818.com/qtfltz/deta_24195417.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。